Maximum Likelihood Estimation in the Proportional Hazards Model of Random Censorship

نویسندگان

  • Myles Hollander
  • Glen Laird
  • Kai Sheng Song
چکیده

The maximum likelihood estimator MLE for the survival function ST under the proportional hazards model of censorship is derived and shown to di er from the Abdushukurov Cheng Lin estimator when the class of allowable distributions includes all continuous and discrete distributions The estimators are compared via an example The MLE is calculated using a Newton Raphson iterative procedure and implemented via a FORTRAN algorithm

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation in the Koziol-Green model using a gamma process prior

The paper deals with nonparametric Bayes estimators in the KoziolGreen model of random censorship. A gamma process is assumed as a prior distribution for cumulative hazard rate and the Bayes estimator incorporating the proportional hazards censorship property of the model is presented. The estimator is also applied to two data sets from literature.

متن کامل

Linear Wavelet-Based Estimation for Derivative of a Density under Random Censorship

In this paper we consider estimation of the derivative of a density based on wavelets methods using randomly right censored data. We extend the results regarding the asymptotic convergence rates due to Prakasa Rao (1996) and Chaubey et al. (2008) under random censorship model. Our treatment is facilitated by results of Stute (1995) and Li (2003) that enable us in demonstrating that the same con...

متن کامل

E cient Estimation for the Proportional Hazards Model with Case Interval Censoring

Maximum likelihood estimation for the proportional hazards model with interval censored data is considered The estimators are computed by pro le likelihood methods using Groeneboom s iterative convexminorant algorithm Under appropriate regularity conditions the maximum likelihood estimator for the regression parameter is shown to be asymptotically normal and e cient Two approaches for estimatio...

متن کامل

Exponential semiparametric regression models under random censorship∗

Using the weighted maximum likelihood method, we propose a consistent estimation of parametric portion and nonparametric portion in exponential semiparametric regression models under random censorship. A small Monte Carlo study is carried out to examine the proposed estimation method.

متن کامل

Bayesian Estimation in the Proportional Hazards Model of Random Censorship under Asymmetric Loss Functions

In this paper, we consider the Bayesian estimation of parameters in the proportional hazards model of random censorship for the Weibull distribution under different asymmetric loss functions. It is well-known for the Weibull distribution that a joint conjugate prior on the parameters does not exist; we use both the informative and noninformative priors on the model parameters. Bayes estimates u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000